Hausdorff dimension and p-adic diophantine approximation
نویسندگان
چکیده
منابع مشابه
Hausdorff dimension and Diophantine approximation
In the present survey paper, we explain how the theory of Hausdorff dimension and Hausdorff measure is used to answer certain questions in Diophantine approximation. The final section is devoted to a discussion around the Diophantine properties of the points lying in the middle third Cantor set.
متن کاملDiophantine Approximation, Khintchine's Theorem, Torus Geometry and Hausdorff Dimension
A general form of the Borel-Cantelli Lemma and its connection with the proof of Khintchine's Theorem on Diophantine approximation and the more general Khintchine-Groshev theorem are discussed. The torus geometry in the planar case allows a relatively direct proof of the planar Groshev theorem for the set of ψ-approximable points in the plane. The construction and use of Haudsorff measure and di...
متن کاملInhomogeneous Diophantine approximation on curves and Hausdorff dimension
The goal of this paper is to develop a coherent theory for inhomogeneous Diophantine approximation on curves in R akin to the well established homogeneous theory. More specifically, the measure theoretic results obtained generalize the fundamental homogeneous theorems of R.C. Baker (1978), Dodson, Dickinson (2000) and Beresnevich, Bernik, Kleinbock, Margulis (2002). In the case of planar curves...
متن کاملDiophantine approximation on manifolds and lower bounds for Hausdorff dimension
Given n ∈ N and τ > 1 n , let Sn(τ) denote the classical set of τ approximable points in R, which consists of x ∈ R that lie within distance q from the lattice 1 q Z for infinitely many q ∈ N. In pioneering work, Kleinbock & Margulis showed that for any non-degenerate submanifold M of R and any τ > 1 n almost all points on M are not τ -approximable. Numerous subsequent papers have been geared t...
متن کاملSimultaneous Diophantine Approximation in Non-degenerate p-adic Manifolds
S-arithmetic Khintchine-type theorem for products of non-degenerate analytic p-adic manifolds is proved for the convergence case. In the padic case the divergence part is also obtained. 1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 1999
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(99)80026-3